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Chemical tools in chromatin research‡

Dirk Schwarzer∗

Eukaryotes organize their DNA in the form of chromatin. This complex of DNA and packaging proteins, the histones, ensures
that all genomic information fits into the limited space of the cell nucleus. In addition to compacting DNA, chromatin itself
regulates the activity of encoded genes. This regulatory process involves many posttranslational modifications of histone
proteins and deciphering the complex crosstalk between histone modifications and gene activity represents a central challenge
for biomedical science. This task has often been supported by sophisticated chemical tools, which were crucial for many
important discoveries in this field. This review provides an overview of chemical tools for chromatin research, with emphasis on
classical and current examples of their applications. Copyright c© 2010 European Peptide Society and John Wiley & Sons, Ltd.
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Background

All organisms must deal with the problem of packaging DNA
into the limited space of their cellular nuclei. Eukaryotes solve this
problem by organizing their DNA into chromatin, a complex of DNA
and dedicated packing proteins, so-called histones. Chromatin can
condense the DNA up to 10 000-fold, compared to its free form.
The basic structural unit of chromatin is the nucleosome, which
comprises four pairs of core histones (H2A, H2B, H3 and H4)
with about 150 base pairs of DNA wrapped around (Figure 1)
[1]. The formation of nucleosomes is the first step in packaging
DNA, which reduces the spatial requirement of the genome about
sevenfold. The second condensation step is the formation of
chromosomal fiber with a diameter of 30 nm, which can be
further arranged into even more compact structures of mitotic
chromosomes [2]. Different forms of condensed chromatin have
been observed by light microscopy as early as 1920. Simple
dyes stain highly condensed mitotic chromatin, which can easily
be observed side by side to the lightly stained more relaxed
forms of chromatin [3]. Interestingly, highly condensed patches of
chromatin remain intact during interphase where most chromatin
is usually less condensed. These condensed patches were termed
heterochromatin in order to distinguish them from decondensed
chromosomal regions called euchromatin. It is known today
that condensed heterochromatin contains mostly inactive genes,
whereas euchromatin harbors active genes [4].

Chromatin exerts an important role in the regulation of gene
activity and histones have a dedicated function in this process.
In order to compensate for the high negative charge of the DNA
phosphodiester backbone, all histones share a high content of
positively charged lysine and arginine residues, which represent
up to 25% of all histone amino acids. The histone architecture
comprises C-terminal globular folds that make up the protein
scaffold around which the DNA is wrapped [5]. In addition,
histones possess unstructured N-terminal tails that protrude from
the nucleosomal core in an extended conformation. Histone
tails are not strictly required for nucleosome formation and
some organisms like archaea employ ‘tailless’ histone variants
for packaging their genomes [6,7]. Despite these facts, amino acid
sequences of histone tails are highly conserved in eukaryotes,
which suggests an important biological function. One likely role

of histone tails is in the formation of higher order chromatin,
but this structural function is still poorly understood. On the
other hand, posttranslational protein modifications of histone
tails exert important regulatory roles in modulating gene activity
[8]. Well-known histone modifications include acetylation and
methylation of lysine residues, as well as phosphorylation of
serines and threonines (Figure 2) [9–11]. These three types
of modifications have been identified in the early 1960s, but
research over the past couple of years has unveiled several
additional histone modification states including methyltion
of arginine, phosphorylation of histidine, ubiquitylation and
SUMOylation of lysine, and poly(ADP-ribosyl)ation of aspartic
or glutamic acid residues [12–15]. Investigations of the complex
crosstalks between histone modifications and chromatin structure
constitute a vibrant field of biomedical science, which is often
aided by sophisticated chemical tools [16]. Here, we focus on the
three ‘classical’ histone modifications: acetylation, methylation
and phosphorylation. We provide an overview about the roles
of these modifications in the regulation of chromatin structure
and gene activity and introduce some of the chemical tools that
researchers employ to decipher their modes of action.

The Role of Histone Modifications in Gene
Regulation

Biochemical and cell biological experiments have produced
two theories that interpret the relationships between histone
modifications, different chromatin states and gene transcription.
The first theory postulates a direct involvement of histone
modifications in chromatin structure, which in turn affects gene
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activity. In essence, it is restricted to providing an explanation to
the molecular consequences of histone acetylation events, which
are associated with active gene transcription. Histone tails
are positively charged due to their high Lys/Arg content. It is
conceivable that this positive charge is compensated by the
negative charge of the DNA phosphodiester backbone in a tail
conformation that might clamp onto the DNA moiety of the
nucleosome, thereby inhibiting efficient transcriptional factor (TF)
binding to DNA sites. Upon histone tail acetylation, the positive
charges are neutralized, the tails can detach from the DNA and
TF sites may become accessible [17]. Biochemical investigations
of DNA binding of the TFIIA transcriptional factor support this
model. TFIIA has a well-defined binding site on the 5S RNA gene.
When this site is incorporated into a nucleosomal structure, the
binding of TFIIA is largely inhibited unless histone tails are either
hyperacetylated or removed all together [18].

Although several observations connected to histone acetylation
can be explained by this first theory, adapting a similar rationale to
other modifications is not straightforward. Protein phosphoryla-
tion introduces a competing negative charge that can potentially
reduce the positive net charge of a tail like lysine acetylation.
However, the physiological effects of protein phosphorylation are
more intricate. Phosphorylation of Ser-10 of histone H3 is asso-
ciated with active gene transcription during interphase, but also
with highly condensed, transcriptionally silent, mitotic chromatin
during metaphase [19]. Furthermore, lysine methylation does not
alter the net charge of the modified residue and is associated with
both gene activation, as well as silencing [20,21,8]. These observa-
tions have led to a second theory that interprets patterns of histone
modification states as recruitment sites for different regulatory pro-
teins. Those regulators can function as either activators of gene
transcription or as silencers [22,23]. This so-called ‘histone code
theory’ is not restricted to a single type of modification but adds a
new level of complexity that is based on the functional nature of
the respective regulatory proteins. This hypothesis is still a subject
of debate because apparently not all modification patterns form
a ‘code’ which triggers a unique alteration of gene activity [24,25].
However, one important prediction from this theory is the exis-
tence of regulatory proteins (’readers’) that can selectively interact
with different histone modification states. Indeed, the existence
of specific ‘chromatin binders’ has been experimentally confirmed
and many of them have been well characterized in the meantime.
Common features of those chromatin regulators are the presence
of dedicated effector domains, structural entities that interact with

Table 1. Selected histone modifications and dedicated binding
domains

Modification
mark

Binding
domain

Lysine acetylation Bromodomains

Lysine methyltion Chromodomains

MBT repeats

PHD fingers

Serine/threonine phosphorylation 14-3-3 proteins BRCT domains

certain histone modification marks in a site-specific manner and
thereby recruit other chromatin-associated proteins [26].

Effector Domains: Readers of Histone
Modifications

Acetylation marks are recognized by bromodomains. These are
approximately 110 amino acids in size and can be found in
many chromatin-associated proteins (Table 1) [27,28]. One of
the first bromodomains to be characterized is part of the PCAF
protein (p300/CBP-associated factor). It recognizes acetylated Lys-
8 and Lys-16 on the N-terminal tail of histone H4 [29,30]. Several
other bromodomain containing proteins have been identified
since then, including bromodomains that occur in tandem. In
such an arrangement, the two bromodomains are positioned in
close proximity as if to interact with two individual acetylation
marks on the same histone tail. However, in case of the tandem
bromodomain of the TATA-binding protein factor 1 homolog Brdt,
bromodomain 2 was found to bind acetlyted Lys-18 on histone H3,
whereas the binding pocket of bromodomain 1 accommodated
two acetylated lysine residues (Lys-5 and Lys-8) of histone H4 in a
cooperative manner [31]. In this regard, the Brdt protein employs
its’ two bromodomains to read a triplet ‘acetylation codon’ on two
separate histone tails.

Different domain types have evolved as binders of methylation
marks including chromodomains, MBT repeats (malignant brain
tumor repeats) and PHD fingers (plant homeodomain) (Table 1).
The chromodomain of heterochromatin protein 1 (HP1) is a proto-
type example [32,33]. HP1 associates with heterochromatin, which
is marked by methylated Lys-9 on histone H3. Detailed biochemical
investigations discovered that this interaction is mediated by the
chromodomain of HP1. An interesting feature of lysine methylation
is the existence of three methylation states: mono-, di- or tri-
methylation, which can be recognized in a differential manner
[26]. For example, the chromodomain of HP1 preferentially binds
to di- and tri-methylated lysines [34]. This reaction is primarily
mediated by cation-π interactions of the methyl-ammonium
moieties of the histone lysine side-chains and aromatic residues
of the chromodomain binding pocket of HP1 [35]. Binding sites
for ‘lower’ methylation states are less hydrophobic and include
an acidic residue that specifically interacts with the remaining
proton that is present in mono- and di-methyl ammonium
moieties [36].

Finally, effector proteins for phosphorylated histone tails have
also been identified. However, despite the many phosphate-
binding domains described for non-histone proteins, only two
effector modules are known for phosphorylated histones to date
[26]. The first example is a 14-3-3 protein binding to phospho-
rylated Ser-10 on histone H3 (Table 1) [37]. This interaction is
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Figure 1. The structure of the nuclosome: H2A, red; H2B, yellow; H3, green; H4, blue; DNA, gray. Prepared from pdb ID: 1AOI [5].

Figure 2. Modification map of histone acetylation, methylation and
phosphorylation on the N-terminal histone tails.

strengthened by concomitant acetylation states of Lys-9 and
Lys-14 on the same histone tail and is important for efficient tran-
scription of the gene encoding histone deacetylase 1 (HDAC 1)
[37,38]. The second example is the tandem BRCT repeat (breast
cancer gene 1 carboxyl-terminal domain) of the MDC1 protein
(mediator of DNA damage checkpoint) which binds to phospho-
rylated Ser-139 on the histone H2A variant γ H2AX in response to
DNA double-strand breaks [39].

Histone-Modifying Enzymes

Histone modifications can be either short lived, long lived, or
transmitted from one generation to the next in a quasi-permanent
manner. Individual lifetimes of histone modification states are
determined by the balanced action of enzymes that specifically add
or remove these modifications [40]. Acetylation of lysine residues
is catalyzed by histone acetyl transferases (HATs) [41]. These
enzymes require the ubiquitous metabolite acetyl-coenzymeA
(Acetyl-CoA) as a cofactor (Figure 3(A)). HATs are typically part of
large multi-protein complexes that can comprise up to 20 different
proteins. The Tetrahymena Gcn5 protein was one of the first HATs
to be identified and has functioned as the founding member of
the GNAT HAT family [42]. In yeast, the Gcn5 homologous gene
has long been known to encode a transcriptional regulator [43].
Besides the GNAT family of HATs, two other groups of HATs, the
MYST and the CBP/p300 family, have been identified [40].

HDACs catalyze the removal of acetyl groups from lysine
residues (Figure 3(A)). Together with HATs, they are responsible
for maintaining the balance between acetylated and deacetylated
histone states. The family of HDACs has been divided into
three classes, based on phylogenetic analyses and sequence
comparisons. HDACs of the classes I and II remove the acetyl moiety
of lysines in a hydrolytic type of reaction that is Zn2+-dependent
(Figure 3(A)). Class III HDACs, also known as Sir2 proteins (silent
information regulator 2) or sirtuins, share neither evolutionary
nor mechanistic relations with HDACs of class I and II [44]. They
depend on NAD+ as co-substrate and release the acetyl moiety
as o-acetyl-ADP-ribose (Figure 3(A)) [45]. Eleven HDACs of classes
I and II are known in mammals, termed HDAC 1–11. At the same
time, there are seven homologs of sirtuines, SIRT 1–7. Like HATs,
functional HDACs are often part of large multifunctional protein
complexes that contain many other chromatin modifying enzymes
and regulatory proteins [46].

Lysine methylation has been known since the 1960s; however,
the first histone methyl transferases (HMTase), -Su(var)3-9-,
were identified 40 years later [47]. The corresponding gene
belongs to the Su(var) group (suppressor of variegation) of
transcriptional inactivators that cause gene silencing in regions
close to heterochromatin [48]. Detailed experiments uncovered
that a conserved protein domain of Su(var)3–9, the SET-domain
(Su(var)3–9, Enhancer of zeste and Trithorax), is one of the long
sought-after HMTase. The SET-domain of Su(var)3–9 methylates
Lys-9 of histone H3, which serves as a hallmark of heterochromatin.
Methylation requires S-adenosyl-metheonine (SAM) as a cofactor
and methyl source (Figure 3(B)). Today, more than 150 SET-domain
proteins have been annotated in the human genome [49]. In
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Figure 3. Histone-modifying enzymes for: A, acetylation; B, methylation; C, phosphorylation. This figure is available in colour online at
wileyonlinelibrary.com/journal/jpepsci.

addition, a further class of HMTases that do not contain SET-
domains, the Dot1 family of proteins, has recently been identified
[50].

Histone methylation was long considered a permanent histone
mark until the first histone demethylase, LSD1 (lysine-specific
demethylase 1) has been discovered. LSD1 is part of the CoREST
complex, which represses neuronal genes in non-neuronal cells
[51–53]. The enzyme shares homology with flavin-dependent
mono-amine oxigenases (MAO) and utilizes molecular oxygen
for catalysis (Figure 3(B)). The reaction mechanism of LSD1 is
restricted to mono- and di-methylated lysines, whereas the
recently identified JumonjiC family of demethylases catalyzes
the removal of methyl groups from tri-methylated lysines [54,55].

Reversible histone phosphorylation is controlled by kinases and
phosphatases (Figure 3(C)). Compared to the intensively studied
lysine modifying enzymes information about histone kinases
and phosphatases is rather scarce. The best-studied histone
phosphorylation event is the modification of Ser-10 of histone H3.
This site is globally phosphorylated during mitosis and the cellular
enzymes that carry out these reactions are aurora B and protein
phosphatase 1 (PP1) [56]. H3 Ser-10 phosphorylation has also been
observed in interphase cells where it is catalyzed by a multitude
of kinases and leads to elevated levels of gene transcription [57].

Chemical Tools for Chromatin Research

Ever since the realization that histone modifications play important
roles in chromatin dynamics and gene activity, scientists have
aimed at developing appropriate techniques to analyze the
resulting landscapes of differential modification states. Here,
sophisticated chemical tools have often paved the way for critical
discoveries in the field [58].

Synthetic Peptides and Peptide-Based Probes

Unstructured histone tails constitute the programming platforms
onto which the differential modification code is ‘written’ by
modifying enzymes, to then be interpreted, or ‘read’, by various
effector proteins, or protein complexes. This concept has led
researchers to employ isolated histone tails as powerful probes
for chromatin research. With a length of 15 to 38 amino acids,
histone tails are well suited for solid-phase peptide synthesis
and the availability of modified building blocks has rendered the
generation of differentially modified histone tails straightforward.
Most histone-modifying enzymes and effector proteins specifically
interact with synthetic histone tail peptides in certain modification
states, or recognize combinations of histone modification marks,

Figure 4. Inhibitors of MAO B and LSD1.

so that tail peptides have become indispensable tools to study
their specificity. In addition, scientists have begun to explore
peptide-based inhibitors of histone-modifying enzymes. In such
constructs, the peptide mediates substrate recognition by the
enzyme and a covalently attached chemical moiety interacts with
the active site of the enzyme upon recognition.

One such example is the development of a mechanism-based
inhibitor for the histone demethylase LSD1 [59]. As stated above,
this flavin-dependent enzyme shares homology with mono-
amine oxidases (MAO). Human MAO B, like most other MAOs,
is irreversibly inhibited by pargyline, a small propargylamine-
containing compound that forms a covalent adduct with the
cofactor of the enzyme (Figure 4) [60]. Despite its homology to
MAOs, LSD1 is not efficiently inactivated by pargyline in vitro
[61]. This notion led to the development of a peptide-based
inhibitor of LSD1, in which a propargylamine moiety is linked
to the primary site of LSD1 action, Lys-4 on histone H3. The
resulting inhibitor, ‘H3-propagyl’ (Figure 4), efficiently inhibited
the demethylase activity of LSD1 in contrast to pargyline. A
detailed biochemical investigation confirmed that the expected
H3-propagyl and cofactor adduct were formed and caused the
inactivation of LSD1 [62]. Importantly, this compound did not
inhibit MAO B and thus demonstrated that the LSD1 specificity is
exclusively mediated by the peptide moiety of the H3-propagyl
compound.

Beyond Peptides: Semisynthetic Histones

Although peptides are very useful probes for analyzing the
function of histone modifications, there are several limits with
respect to biological questions that require larger chromatin
structures. For example, the involvement of histone modifications
in the formation of higher order chromatin, or the synergy between
modifications located on two different histones, can only be
addressed with whole nucleosomes, or arrays of nucleosomes. This
problem can be solved with chemoselective ligation techniques
like native chemical ligation (NCL) or expressed protein ligations
(EPL). [63,64]. Both methods combine the advantages of solid-
phase peptide synthesis and recombinant protein production
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Figure 5. Application of semisynthetic histones in chromatin research. (A) H4 Lys-16 acetylation in the formation of higher order chromatin structures.
(B) Crosstalk of histone ubiquitylation and methylation mediated by the HMTase Dot1; Aux: auxiliary group; PG: protecting group (C) Aminoethylation of
histones. This figure is available in colour online at wileyonlinelibrary.com/journal/jpepsci.

techniques [65]. Modified histone tails can be ligated to the
globular core histone domains in order to provide homogenously
modified full-length histones, which can then be incorporated into
nucleosomes or nucleosomal arrays.

This strategy was applied in the synthesis of phosphorylated,
acetylated and methylated histones for various purposes [66–69].
Linking an individual histone acetylation to the formation of
higher order chromatin structures is a prominent example of this
approach [70]. An array of 12 nucleosomes can form a structure
that resembles the biophysical properties of the elusive 30 nm
chromatin fiber [71]. Previous investigations have shown that
amino acids 14–23 of the tail of histone H4 are crucial for such
a structural arrangement [71]. As this region contains one of the
four known acetylation sites of H4, Lys-16, a role of this single
modification mark in 30 nm fiber-formation was tested with a
semisynthetic version of histone H4, homogeneously acetylated at
Lys-16 [71]. In order to produce this protein, a synthetic H4 peptide
thioester (residues 1–22) acetylated at Lys-16 was generated and
ligated to recombinant H4 (residues 23–102, containing an N-
terminal Cys) by NCL (Figure 5(A)). This modified, semisynthetic
version of histone H4 was incorporated into a nucleosomal
array and subsequently employed for biochemical investigations.
Strikingly, nucleosomal arrays assembled in this manner did not
form 30 nm fibers. This finding clearly demonstrated a direct role
of the singly acetylated Lys-16 residue in the formation of higher
order chromatin.

Finally, an elaborated semisynthesis approach has been
developed and applied to study the functional crosstalk of histone
ubiquitylation and lysine methylation, catalyzed by the Dot1
HMTase (Figure 5(B)) [72,73]. Dot1 methylates Lys-79 of histone

H3, which serves as an important mark for gene silencing. Lys-79
methylation is strongly affected by ubiquitylation of Lys-120 of
histone H2B, by either affecting Dot1 recruitment or by modulating
its activity (Figure 5(B)) [72]. In order to resolve this ambiguity,
ubiquitylated H2B was generated in a two-step ligation process. At
first, an ubiquitin thioester was ligated to Lys-120 of a synthetic H2B
peptide (residues 117–125) by an auxiliary-mediated NCL reaction.
In a second step, the auxiliary and a protecting group masking the
N-terminal Cys were removed and the ubiquitylated H2B peptide
was ligated to a recombinant H2B thioester (residues 1–116)
generated by EPL. The resulting uH2B construct (Figure 5(B))
was assembled into nucleosomes and tested for Dot1 activity.
Nucleosomes reconstituted with uH2B strongly stimulated the
activity of Dot1 [72]. In contrast, nuclosomes assembled with non-
modified H2B did not. Importantly, this stimulation was restricted
to the nucleosome containing uH2B, which led to the conclusion
that each nucleosome methylated at Lys-79 of H3 must have been
ubiquitylated at Lys-120 of histone H2B at some point of time.

Alternative Strategies for Modified Histones

A prominent alternative method for generating homogeneously
methylated histones is the aminoethylation of Cys residues. With
exception of Cys-110 in histone H3 cysteines are absent in the
core histones and can be introduced artificially by site-directed
mutagenesis at any site. Recombinant Cys-mutated proteins are
subsequently treated with an alkylation reagent like 2-chloro-
N,N-dimethylethylamine hydrochloride, which converts the single
Cys residue into a sulfur-containing analog of di-methyl-Lys
(Figure 5(C)). Under optimized conditions, this alkylation reaction is
specific for thiols thus allowing the generation of homogeneously
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Figure 6. Natural products that inhibit HDACs.

methylated histones in large quantities [74]. This method has been
successfully applied to probe the effects of histone methylation on
nucleosome structure [75]. Another promising approach entails
genetic encoding of modified lysines with evolved orthogonal
tRNA synthetase/tRNA pairs. Acetylated and methylated lysine
residues have been successfully produced in E. coli in this manner
[76–78].

Natural Products and Small Molecules

Nature has evolved many chemical modulators of chromatin
activity. These natural products are often inhibitors of histone-
modifying enzymes. They naturally occur in bacteria and fungi
and represent important tools in chromatin research and drug
development. Indeed, one key discovery in the chromatin field
is directly linked to their utilization. Trapoxin a natural histone
deacetylase inhibitor (HDACi) was instrumental in the discoveries
of the first HDAC [79]. Trapoxin functions as an irreversible HDACi
and causes a dramatic increase in histone acetylation levels in
cells treated with this compound [80–82]. The structure of this
cyclic peptide enabled the delineation about its mode of action
(Figure 6). Trapoxin contains an electrophilic epoxyketone that
closely resembles acetylated lysine residues, and it had been
hypothesized that this moiety could alkylate a nucleophilic
residue of HDACs [79]. This assumption was confirmed by a
synthetic Trapoxin derivative, K-trap, which was immobilized on
a solid support to isolate the first HDAC from nuclear extracts of
mammalian cells (Figure 6). Microsequencing identified the HDAC
protein which subsequently initiated a period of intensive HDAC
research in the following years.

Apart from academic research endeavors, natural products and
synthetic small molecule inhibitors of histone-modifying enzymes
are also investigated for their suitability as potential drugs [83]. The
dynamic balance of acetylated and deacetylated histone states is
important for genome stability and the regulation of gene activity.
Alterations in HDAC and HAT activities, including overexpression
or aberrant recruitment of HDACs by oncoproteins, or mutations in
HATs can be found in several forms of cancer [84]. This notion has
challenged scientists to search for, and explore small molecules
and natural products that are capable of modulating HDAC/HAT
activities for therapeutic intervention. Today, several HDACis are
tested in clinical trials and their projected efficaciousness render
them most promising drug candidates. The first known HDACis to
be clinically tested were short-chain fatty acids like butyric acid,
which were shown to exhibit broad HDAC inhibitory potential

both in vivo and in vitro. These compounds, however, suffered
from short in vivo half-lives, which resulted in low plasma levels
[85]. One of the most intensively studied HDACi is trichostatin A
(TSA) (Figure 6), which is known to inhibit class 1 and 2 HDACs in the
low nanomolare range. Cells treated with TSA display a significant
increase in histone acetylation levels, but poor pharmacokinetics
prohibit a clinical application of this compound [85]. TSA is a
hydroxamic acid-based HDACi that coordinates the essential Zn2+-
ion of the active site. With suberoylanilide hydroxamic acid (SAHA),
also known as Vorinostat and marked under the trademark name
Zolinza, the first HDACi was approved for cancer treatment in
2006 [85]. It is likely that more compounds that target histone-
modifying enzymes will be added to this collection in the near
future.

Perspective

Deciphering the complex regulation of chromatin structure
with respect to differential gene activity remains one of the
major challenges in the biomedical sciences today. Detailed
knowledge about these processes will be necessary for a general
understanding of eukaryotic genomes, as well as for the treatment
of several human diseases. Chemical tools are inextricably
linked to key discoveries in chromatin research and our current
understanding of epigenetics. It is certain that chemical methods
will continue to represent indispensible tools in chromatin research
and that future challenges will likely inspire new generations of
such tools.
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